Single-molecule high-resolution imaging with photobleaching.
نویسندگان
چکیده
Conventional light microscopy is limited in its resolving power by the Rayleigh limit to length scales on the order of 200 nm. On the other hand, spectroscopic techniques such as fluorescence resonance energy transfer cannot be used to measure distances >10 nm, leaving a "gap" in the ability of optical techniques to measure distances on the 10- to 100-nm scale. We have previously demonstrated the ability to localize single dye molecules to a precision of 1.5 nm with subsecond time resolution. Here we locate the position of two dyes and determine their separation with 5-nm precision, using the quantal photobleaching behavior of single fluorescent dye molecules. By fitting images both before and after photobleaching of one of the dyes, we may localize both dyes simultaneously and compute their separation. Hence, we have circumvented the Rayleigh limit and achieved nanometer-scale resolution. Specifically, we demonstrate the technique by measuring the distance between single fluorophores separated by 10-20 nm via attachment to the ends of double-stranded DNA molecules immobilized on a surface. In addition to bridging the gap in optical resolution, this technique may be useful for biophysical or genomic applications, including the generation of super-high-density maps of single-nucleotide polymorphisms.
منابع مشابه
Room-Temperature Fluorescence Imaging and Spectroscopy of Single Molecules by Two-Photon Excitation
We report fluorescence imaging of single dye molecules on a glass substrate by two-photon excitation with femtosecond pulses from a mode-locked Ti:sapphire laser. The single-molecule images exhibit a high signal to background ratio (>30:1) and a high spatial resolution (fwhm < /3). A quadratic intensity dependence of single-molecule emission rate is experimentally verified, and single-molecule ...
متن کاملDesign and application of single fluorophore dual-view imaging system containing both the objective- and prism-type TIRF.
Simultaneous detection of two fluorescent markers is important in determination of distance, relative motion and conformational change of nanoparticles or nanodevices. We constructed an imaging system which combines deep-cooled sensitive EMCCD camera with both the objective- and prism-type TIRF. A laser combiner was introduced to facilitate laser controls for simultaneous dual-channel imaging b...
متن کاملModular stitching to image single-molecule DNA transport.
For study of time-dependent conformation, all previous single-molecule imaging studies of polymer transport involve fluorescence labeling uniformly along the chain, which suffers from limited resolution due to the diffraction limit. Here we demonstrate the concept of submolecular single-molecule imaging with DNA chains assembled from DNA fragments such that a chain is labeled at designated spot...
متن کاملAdvancing Single-Molecule Fluorescence Spectroscopy and Super-Resolution Microscopy with Organic Fluorophores
iii-The manifold exciting applications of fluorescence in biophysics, nano-technology or super-resolution microscopy, pose extraordinary and multiple demands on the (single) organic dye molecules employed. A high extinction coefficient together with a high fluorescence quantum yield and water-solubility are nowadays considered as standard properties of suitable organic dyes. However, single-mol...
متن کاملMulticolor conjugated polymer dots for biological fluorescence imaging.
Highly fluorescent conjugated polymer dots were developed for demanding applications such as fluorescence imaging in live cells. These nanoparticles exhibit small particle diameters, extraordinary fluorescence brightness, and excellent photostability. Single particle fluorescence imaging and kinetic studies indicate much higher emission rates (approximately 10(8) s(-1)) and little or no blinkin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 101 17 شماره
صفحات -
تاریخ انتشار 2004